To set up a failover cluster, you must connect the nodes to the cluster hardware, and configure the nodes into the cluster environment. The foundation of a cluster is an advanced host membership algorithm. This algorithm ensures that the cluster maintains complete data integrity by using the following methods of inter-node communication:
- Network connections between the cluster systems
A Cluster Configuration System daemon (ccsd) that synchronizes configuration between cluster nodes
To make an application and data highly available in a cluster, you must configure a cluster service, an application that would benefit from Red Hat Cluster Manager to ensure high availability. A cluster service is made up of cluster resources, components that can be failed over from one node to another, such as an IP address, an application initialization script, or a Red Hat GFS shared partition. Building a cluster using Red Hat Cluster Manager allows transparent client access to cluster services. For example, you can provide clients with access to highly-available database applications by building a cluster service using Red Hat Cluster Manager to manage service availability and shared Red Hat GFS storage partitions for the database data and end-user applications.
You can associate a cluster service with a failover domain, a subset of cluster nodes that are eligible to run a particular cluster service. In general, any eligible, properly-configured node can run the cluster service. However, each cluster service can run on only one cluster node at a time in order to maintain data integrity. You can specify whether or not the nodes in a failover domain are ordered by preference. You can also specify whether or not a cluster service is restricted to run only on nodes of its associated failover domain. (When associated with an unrestricted failover domain, a cluster service can be started on any cluster node in the event no member of the failover domain is available.)
You can set up an active-active configuration in which the members run different cluster services simultaneously, or a hot-standby configuration in which primary nodes run all the cluster services, and a backup cluster system takes over only if the primary nodes fail.
If a hardware or software failure occurs, the cluster automatically restarts the failed node's cluster services on the functional node. This cluster-service failover capability ensures that no data is lost, and there is little disruption to users. When the failed node recovers, the cluster can re-balance the cluster services across the nodes.
In addition, you can cleanly stop the cluster services running on a cluster system and then restart them on another system. This cluster-service relocation capability allows you to maintain application and data availability when a cluster node requires maintenance.
Tidak ada komentar:
Posting Komentar